Glycosidic Bond Conformation Preference Plays a Pivotal Role in Catalysis of RNA Pseudouridylation: A Combined Simulation and Structural Study

Jing Zhou¹, Chao Lv¹, Bo Liang², Mengen Chen², Wei Yang¹,²* and Hong Li¹,²*

¹Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
²Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA

Received 5 May 2010; received in revised form 26 June 2010; accepted 29 June 2010
Available online 6 July 2010

The most abundant chemical modification on RNA is isomerization of uridine (or pseudouridylation) catalyzed by pseudouridine synthases. The catalytic mechanism of this essential process remains largely speculative, partly due to lack of knowledge of the pre-reactive state that is important to the identification of reactive chemical moieties. In the present study, we showed, using orthogonal space random-walk free-energy simulation, that the pre-reactive states of uridine and its reactive derivative 5-fluorouridine, bound to a ribonucleoprotein particle pseudouridine synthase, strongly prefer the syn glycosidic bond conformation, while that of the nonreactive 5-bromouridine-containing substrate is largely populated in the anti conformation state. A high-resolution crystal structure of the 5-bromouridine-containing substrate bound to the ribonucleoprotein particle pseudouridine synthase and enzyme activity assay confirmed the anti nonreactive conformation and provided the molecular basis for its confinement. The observed preference for the syn pre-reactive state by the enzyme-bound uridine may help to distinguish among currently proposed mechanisms.

Edited by D. Case

Keywords: pseudouridine synthase; H/ACA ribonucleoprotein; free energy simulation; catalytic mechanism; ring conformation

Despite its prevalence¹,² and demonstrated importance in RNA structure³–⁵ and function⁶,⁷ the catalytic mechanism of pseudouridylation remains largely speculative, partly due to lack of knowledge of the pre-reactive state critical to the identification of reactive chemical moieties. This process is thought to begin with the cleavage of the N-glycosyl bond (ring cleavage), followed by a 180° rotation of the uracil base while still enzyme bound (ring rotation), reattachment of the ring at C5 (ring reattachment), and, finally, deprotonation of C5."10 (Fig. 1). Cofactors are not known to be required for any of these steps.

In bacteria, approximately a dozen uridine residues in transfer RNA and ribosomal RNA (rRNA) are modified by six families of pseudouridine synthases: TruA, TruB, TruD, RluA, RsuA, and Pus10.¹¹–¹⁹ Each of these pseudouridine synthases is responsible for modifying one or several specific uridine nucleotides in transfer RNA or rRNA. In Archaea and Eukarya, where RNA and small nuclear RNA are extensively modified, pseudouridylation is largely carried out by box H/ACA ribonucleoprotein particle (RNP) pseudouridine synthases.²⁰–²⁴ Unlike stand-alone pseudouridine synthases, box H/ACA RNP pseudouridine synthases are multisubunit enzymes and comprise four protein subunits and one RNA subunit (Fig. 1a). The four protein subunits include Cbf5, Nop10, Gar1, and Nhp2 (L7Ae in Archaea). Cbf5 shares sequence motifs and a structural similarity with the TruB family of pseudouridine synthases and is the catalytic subunit of the RNP enzyme. The RNA...
subunit belongs to the class of box H/ACA noncoding RNA and is characterized by a hairpin-like secondary structure and the strictly conserved ACA trinucleotide at its 3′ end. Substrate RNA is captured by the RNP enzyme through its basepairing with the central internal loop (pseudouridine pocket) of the box H/ACA RNA (Fig. 1a).

Regardless of their substrate specificity and enzyme composition, however, all families of pseudouridine synthases contain a well-conserved catalytic domain and a catalytic aspartate residue. Mutation of catalytic Asp to Asn in bacterial TruB and TruA pseudouridine synthases resulted in complete loss of enzyme activity. Furthermore, mutation of Asp to Ala in an archaeal H/ACA RNP also abolished modification activity, suggesting that this residue is essential to catalysis.

Two mechanisms that invoke Asp as a nucleophile have been proposed for the catalytic process. In Michael addition mechanism (Fig. 1b), Asp attacks the RNA ring atom C6, leading to an Asp-Pyr covalent adduct. The strongest evidence supporting this mechanism is the observation on an RNA substrate containing 5′-fluorouridine (5FU) that Escherichia coli TruA and RluA either cross-link to or strongly interact with the hydrated product 5-fluoro-6-hydroxpseudouridine (5FhΨ). In opposition to the proposed Michael addition mechanism, however, the crystal structures of TruB, RluA, and the H/ACA pseudouridine synthase bound to 5FU-substituted RNA substrates do not show a covalent intermediate, although it was argued in the case of the RluA–RNA complex that X-ray radiation used for diffraction studies dissolved the possible covalent intermediate.
covalent linkage.17,19,31,32 Furthermore, the bound 5FhΨ in all cases has its C6 pointing away from the γ-carboxyl group of the catalytic Asp. The unfavorable ring orientation is also observed in the complex of the Asp-Asn TruB mutant bound to a 5FU-containing RNA substrate.33 The second proposed mechanism is acylal mechanism (Fig. 1c), in which the catalytic Asp attacks the sugar atom C1′ to form the acylal intermediate that stabilizes the oxocarbonium ion. This mechanism should be less sensitive to the ring orientation than to the distance between Asp and C1′. Elucidation of the pseudouridine synthase mechanism thus requires an assessment of the glycosidic bond conformation of uridine in its pre-reactive state.

Previously, we obtained a cocrystal structure of a functional H/ACA RNP pseudouridine synthase bound to a guide RNA and a 5FU-containing substrate RNA.32 This structure made it possible for us to explore the theoretical pre-reactive state of the substrate. We carried out free-energy simulation on the box H/ACA RNP complex containing the wild-type and 5FU substrates using the previously developed orthogonal space random-walk algorithm.34,35 As detailed in Supplementary Data, we utilized a novel “alchemical” transition36,37 scheme to realize the syn-to-anti conformation transformation about the glycosidic bond of uridine (Fig. 2a). The previously determined structure containing 5FhΨ was used to build the starting structures for the simulation by substituting 5FhΨ for uridine base. We found that for both the wild-type substrate and the 5FU-substituted substrate, the syn conformation is preferred to the anti conformation by −3.5 kcal/mol and −2.5 kcal/mol, respectively. This is in contrast to the anti conformation of 5-fluorouridine captured in the TruB D48N crystal structure containing 5FU,33 suggesting that the D48N mutation may sufficiently disturb the microenvironment of the active site to favor the anti conformation.

The syn conformation places the ring C6 atom close to the catalytic Asp85 (Fig. 2b). In order to test the importance of the syn conformation to catalysis, we carried out the same free-energy simulation on a 5-bromouridine (5BrU)-containing substrate bound to H/ACA RNP. Bromine is less electronegative but bulkier in size than fluorine. Consistently, 5BrU was found to prefer the anti conformation to the syn conformation by more than 8 kcal/mol (Fig. 2b), suggesting that it may be defective in the ring cleavage step.

To determine if 5BrU is a substrate for the pseudouridine synthase, we used the DNA splint technique for constructing both wild-type substrate RNA and 5BrU-containing substrate RNA from two synthetic oligos38 with a 32P label on the 5′ position of the target uridine or modified uridine. The integrity of the ligated substrate RNA was checked on a denaturing polyacrylamide gel (data not shown). After pseudouridylation assays with a saturating amount of H/ACA RNP pseudouridine synthase and nuclease P1 digestion of RNA substrates, formation of uridine (or modified uridine) isomers was detected by thin-layer chromatography. As shown in Fig. 3a, 5BrU completely inhibited isomerization.

To further provide evidence for the reactivity of 5BrU with the enzyme, we obtained a crystal structure of 5BrU in complex with the Pyrococcus furiosus H/ACA RNP that contains Cbf5, Nop10, L7Ae, and a guide RNA at 2.9 Å. The crystallographic data are listed in Table 1 of Supplementary Data. Its global structure bears a strong similarity to the previously determined 5FhΨ-bound RNP structure.31,32 However, σA-weighted electron den-

![Fig. 2. Computationally identified low-energy structures of uridine (orange), 5FhΨ (blue), and 5BrU (pink). The syn and anti conformations and their free-energy difference are defined as shown in (a) and are represented by a “coupling parameter” (λ) for the calculation of free-energy difference. The computed free-energy difference after convergence is shown below each complex in (b). Details of free-energy simulation are included in Supplementary Data.](image-url)
sity maps of 5BrU clearly revealed that it did not react to the enzyme and is in the computationally predicted anti conformation (Fig. 3b). Although its C1′ atom has a distance to the carbonyl group of the catalytic Asp85 (4.3 Å) similar to that of 5FhΨ, its C6 atom points away from Asp85. Even though Asp85 could facilitate a nucleophilic attack on C6 in this orientation (Fig. 3b, cyan arrow), it would result in the minor trans 6-hydroxyl stereoisomer. Therefore, 5BrU is confined to an orientation that does not permit the initial attack to take place. The bromide atom is primarily responsible for the change, since the anti conformation is preferred in its presence. The bromide atom is in close contact with several polar and aliphatic groups of the active site. These include the hydroxyl group of Tyr113, the amide group of Ile183, and the aliphatic group of Ile183 (Fig. 3c). Strikingly, the O6 atom in the bound 5FhΨ is located in exactly the same site and establishes similar extensive interactions with the enzyme, which likely serves to hyperstabilize the reaction intermediate (Fig. 3c).

We have demonstrated uridine’s clear preference for the syn conformation in the microenvironment provided by the H/ACA RNP pseudouridine synthase. Perturbation of this conformation resulted in inhibition of the activity. These results highlight an important role of the pre-reactive-state glycosidic bond conformation in catalysis. Significantly, the predicted pre-reactive state conformation suggests a preference for a C6-based catalytic mechanism. Regardless of the actual mechanism of nucleophilic attack, C6-based schemes are consistent with the formation of the 5FhΨ intermediate and the 6-hydroxyl group acquired from the aqueous solution.

Accession numbers

Coordinates and structure factors have been deposited in the Protein Data Bank with accession number 3LWO.

Acknowledgements

This work was supported, in part, by National Institutes of Health grant R01 GM66958-01 (H.L.), National Science Foundation grant 0919983 (W.Y.), and American Heart Association Florida/Puerto Rico Affiliate predoctoral fellowships 0815267E (J.Z.) and 0815267E (B.L.). X-ray diffraction data were collected from the Southeast Regional Collaborative Access Team 22-ID beamline at the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source was supported by

Fig. 3. Enzyme activity assay (a) and structural study results (b and c) of 5BrU bound to H/ACA RNP pseudouridine synthase. (a) Thin-layer chromatography separation of reacted and digested wild-type (U) or 5BrU substrate nucleotides. “C,” Cbf5; “N,” Nop10; “G,” Gar1”; “L,” L7Ae. D85A is the catalytically deficient mutant of Cbf5. (b) Top: Crystal structure of the active site of the 5BrU substrate bound to H/ACA RNP. Omitted 3Fo–2Fc map is shown at 1.0σ around the target nucleotide. Bottom: Comparison of the computed low-energy structure (pink) to the crystal structure (red). (c) Top: 5BrU (red) is tightly bound by active-site residues (surface). Bottom: Superimposed 5FhΨ (blue) shows a similar location of the 6-hydroxyl group as 5-bromide. Experimental details for enzyme activity assay, protein crystallization, and structure determination are included in Supplementary Data.

Supplementary Data

Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.jmb.2010.06.061](http://dx.doi.org/10.1016/j.jmb.2010.06.061)

References