Importance of a tRNA anticodon loop modification and a conserved, noncanonical anticodon stem pairing in tRNA_{CGG}^{Pro} for decoding

Ha An Nguyen{supplementary}, Eric D. Hoffer{supplementary}, and Christine M. Dunham{supplementary}

From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 and the Department of Chemistry, Emory University, Atlanta, Georgia 30322

Edited by Karin Musier-Forsyth

Modification of anticodon nucleotides allows tRNAs to decode multiple codons, expanding the genetic code. Additionally, modifications located in the anticodon loop, but outside the anticodon itself, stabilize tRNA–codon interactions, increasing decoding fidelity. Anticodon loop nucleotide 37 is 3′ to the anticodon and, in tRNA_{CGG}^{Pro}, is methylated at the N1 position in its nucleobase (m{supplementary}G37). The m{supplementary}G37 modification in tRNA_{CGG}^{Pro} stabilizes its interaction with the codon and maintains the mRNA frame. However, it is unclear how m{supplementary}G37 affects binding at the decoding center to both cognate and +1 slippery codons. Here, we show that the tRNA_{CGG}^{Pro} m{supplementary}G37 modification is important for the association step during binding to a cognate CCG codon. In contrast, m{supplementary}G37 prevented association with a slippery CCC-U codon. Similar analyses of frameshift suppressor tRNA_{SufA}^{pro}, a tRNA_{CGG}^{Pro} derivative containing an extra nucleotide in its anticodon loop that undergoes +1 frameshifting, reveal that m{supplementary}G37 destabilizes interactions with both the cognate CCG and slippery codons. One reason for this destabilization is the disruption of a conserved U32-A38 nucleotide pairing in the anticodon stem through insertion of G37.5. Restoring the tRNA_{SufA}^{pro} U32-A37.5 pairing results in a high-affinity association on the slippery CCC-U codon. Further, an X-ray crystal structure of the 70S ribosome bound to tRNA_{SufA}^{pro} U32-A37.5 at 3.6 Å resolution shows a reordering of the anticodon loop consistent with the findings from the high-affinity measurements. Our results reveal how the tRNA modification at nucleotide 37 stabilizes interactions with the mRNA codon to preserve the mRNA frame.

Protein synthesis is performed by the ribosome, a conserved protein–RNA macromolecular machine where mRNA, tRNAs, and translation factors read the genetic information as presented on mRNA into proteins. There are four defined stages of protein synthesis: initiation, elongation, termination, and recycling (reviewed in Ref. 1). During elongation, three nucleotides of the mRNA codon are read (or decoded) by three anticodon nucleotides of a tRNA in the ribosomal aminoacyl site (A site){supplementary} on the small 30S subunit. The three-nucleotide code on the mRNA defines a single amino acid delivered by the corresponding tRNA. The regulation of the mRNA frame is critically important to maintain the correct sequential addition of amino acids to the nascent chain (2). Despite the importance of accurate protein expression for cell viability, the molecular basis for how the ribosome maintains this three-nucleotide mRNA frame is not well-understood.

Because tRNAs decode mRNAs, these RNA molecules probably play a role in mRNA frame maintenance. tRNAs are ~76–90 nucleotides in length and adopt an L-shaped tertiary structure allowing them to fit into ribosome-binding sites that span both subunits (Fig. 1). tRNAs undergo extensive post-transcriptional modifications important for the correct tertiary fold of the tRNA, including the conformation of the anticodon stem-loop (ASL) (3). RNA modifications that are located in the anticodon and neighboring nucleotides in the ASL contribute to the accuracy and speed of translation (4, 5) by stabilizing the interactions between the anticodon and codon (3, 6–8). After decoding, these tRNA modifications are also important during translocation of the mRNA-tRNA pairs (9) and have also been implicated in mRNA frame maintenance (6).

The selection of the correct tRNA for each mRNA codon relies on the formation of Watson–Crick base pairs between the first two nucleotides of the codon and nucleotides 36 and 35 of the anticodon (Fig. 1A). The interaction between the third nucleotide of the codon and anticodon nucleotide 34 is not required to be Watson–Crick. Instead, a G-U wobble pair or a modified anticodon nucleotide 34 – codon nucleotide pair can form. The modification of nucleotide 34 enables non-Watson–Crick interactions with the third nucleotide position of the mRNA that is accepted as cognate by the ribosome. The increased flexibility in codons that each tRNA can decode

1 A Burroughs Wellcome Fund Pathogenesis of Infectious Diseases Fellow. To whom correspondence should be addressed: Dept. of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322. Tel.: 404-712-1756; Fax: 404-727-2378; E-mail: christine.m.dunham@emory.edu.

2 The abbreviations used are: A site, aminoacyl site; P site, peptidyl site; ASL, anticodon stem-loop; cmo5U34, uridine-5-oxyacetic acid; mmn5s5, 5-methylaminomethyl-2-thiouridine; t6A, 6-threonylcarbamoyladenosine; ms2t6A, 2-methylthio derivative; EF, elongation factor; β-Me, β-mercaptopropanol; PDB, Protein Data Bank.
allows for the degeneracy of the genetic code where the 61 codons are decoded by fewer tRNAs (10). Therefore, tRNA modifications at nucleotide 34 have an important and essential role in the process of decoding.

Nucleotide 34 contains many diverse modifications that are typically required for accurate translation (11). Two examples include the uridine-5-oxyacetic acid (cmoU34) in tRNA^{Ala}_{CGU} and the 5-methylaminomethyl-2-thiouridine (mm^5S^2) U34 modification in tRNA^{1ys}_{UUU}. The cmoU34 modification in tRNA^{Ala}_{CGU} stabilizes its interaction with C6 at the wobble position (12). The mm^5S^2 U34 modification in tRNA^{1ys}_{UUU} allows for pairing with AAA or AAG codons (13, 14), However, a 6-threonylcarbamoyladenosine (t^6A) or a 2-methylthio derivative (ms^2t^6A) at nucleotide 37 is required for recognition of the AAG codon (4, 7). Although all of these codon–anticodon pairings should be recognized by the ribosome, the instability of the anticodon loop of tRNA^{1ys}_{UUU} and, thus, its interactions with the AAA codon require both modifications at nucleotides 34 and 37. Nucleotide 37 of the tRNA is located 3’ to the anticodon, adjacent to the first position of the Watson–Crick base pair between the codon and anticodon nucleotide 36 (Fig. 1A). The codon–anticodon pairing between tRNA^{1ys}_{UUU} and its codon is weak in the absence of the modifications because of the three A-U base pairs and poor stacking of the UUU anticodon (15). Both the t^6A and ms^2t^6A modifications planar heterocycle moieties that promote cross-strand stacking interactions between A38 of the tRNA and the first base in the mRNA codon to stabilize the codon–anticodon pairing (16). Because decoding relies on both the high-affinity binding of cognate tRNAs to the decoding center and conformational changes of the 30S subunit, the modifications influence both aspects of decoding.

Nucleotide 37 is modified in >70% of all tRNAs and is typically a purine (20). Among the modified nucleosides, the t^6A and methylated guanosine (m^G) are the most common (11). In the absence of the modification at nucleotide 37, the anticodon loops of human tRNA^{1ys} and yeast tRNA^{Asp} lack structural rigidity compared with their modified forms (21, 22). Likewise, the modification at nucleotide 37 in Escherichia coli tRNA^{1ys} and tRNA^{Phe} stabilizes the canonical uridine turn (U turn) in the ASL, which is required for high-affinity binding to the A site (23–25).

Approximately 75% of bacterial tRNAs containing the m^1G37 modification decode CNN codons (where N indicates any nucleotide), including Leu, Pro, His, Gln, and Arg codons (11). The m^1G37 modification is present in ~95% of all known sequences of proline tRNAs (26). In bacteria, the essential methyltransferase TrmD (Trm5 in eukaryotes and archaea) catalyzes the N1-methylation of G37 in tRNAs. Furthermore, the m^1G37 modification stabilizes the anticodon of the tRNA to prevent +1 ribosomal frameshifting errors, whereas mutations in trmD also cause growth defects (6, 26–28). tRNA^{Pro}_{CGG}, the major isoacceptor for proline, decodes the CCG codon and, in the absence of the m^1G37 modification, causes +1 frameshifting on CCC-N codons. It was previously thought that tRNA^{Pro}_{CGG} lacking the m^1G37 modification would allow for a four-nucleotide interaction between the anticodon and the mRNA codon with G37 interacting with the mRNA codon (29). However, biochemical and structural studies of ASL Pro^{CGG} lacking the modification revealed that this four-nucleotide interaction does not occur in the A site during decoding (30, 31). Additionally, the mRNA is positioned in the unshifted or zero frame, indicating that the frameshift event occurs post-decoding, consistent with recent structures (32). Interestingly, the absence of the methylation at G37 causes a distortion of the tRNA on the opposite side of the anticodon loop at nucleotide U32 (31), leading to the disruption of interactions with A38. Collectively, these results suggest a previously unappreciated role of the stabilization of the 32-38 pairing in tRNA^{Pro}_{CGG} predicted to maintain the correct mRNA frame (31).

Frameshift suppressor tRNAs derived from tRNA^{Pro}_{CGG} contain an insertion between anticodon loop nucleotides 37 and 38 (referred to as 37.5) and decode CCC-N codons as proline (26, 33–36) (Fig. 1). These mutant tRNAs are genetic suppressors that perform noncanonical reading of the genetic code to restore the reading frame (37, 38). In this case, frameshift suppressor tRNA^{SufA6}, isolated from Salmonella enterica serovar Typhimurium, contains an eight-nucleotide anticodon loop by the addition of G37.5 that causes +1 frameshifting. The structure of 70S-tRNA^{SufA6} bound to CCC-A/U/C codons at the decoding center that undergo +1 frameshifting revealed similarities to the structure of 70S–tRNA^{Pro}_{CGG} lacking the m^1G37 bound to a near-cognate codon that also promotes +1 frameshifting (31). Both tRNAs decode the mRNA in the unshifted or zero frame, indicating that the shift into the new frame occurred post-decoding. Moreover, the inserted 37.5 nucleotide and the lack of m^1G37 both cause destabilization of nucleotides on the opposite side of the anticodon loop that ablates a conserved, non-Watson–Crick U32-A38 pairing. The 32-38 pairing was restored in both the tRNA^{Pro}_{CGG} and tRNA^{SufA6} in the context of recognizing a cognate, three-nucleotide codon. The disruption of the 32-38 pairing is particularly notable due to its universal significance in tuning the ribosomal binding across tRNAs (39). These results provide insight into how tRNA modifications and the 32-38 pairing in the anticodon loop together lead to mRNA frame maintenance.

Here, we tested how the m^1G37 modification in tRNA^{Pro}_{CGG} and tRNA^{SufA6} impacts binding at the decoding center to cognate and slippery +1 codons. Further, we engineer tRNA^{SufA6}
to contain a conserved U32-A38 pairing to attempt to restore high-affinity binding to the decoding center. Last, a 3.6 Å X-ray crystal structure of tRNA<sub>SufA6</sub> containing this engineered 32-38 pairing bound to the 70S ribosomal A site reveals a reordering of the 32-38 pair required for decoding.

Results

The m<sup>1</sup>G37 modification in tRNA<sub>CGG</sub><sup>Pro</sup> stabilizes binding to the A site

To assess the importance of the m<sup>1</sup>G37 modification in tRNA<sub>CGG</sub><sup>Pro</sup> in decoding, we used established filter binding assays to determine binding kinetics to the A site (39). E. coli 70S ribosomes were programmed with mRNA containing a peptidyl-site (P-site) AUG start codon, an A-site proline CCG codon, and P-site E. coli tRNA<sup>Fmet</sup>. We used a chemically synthesized ASL containing 18 nucleotides of tRNA<sub>CGG</sub><sup>Pro</sup> and a m<sup>1</sup>G37 modification to ensure that the RNA was completely modified (Table S1). tRNA<sub>CGG</sub><sup>Pro</sup> with the m<sup>1</sup>G37 modification binds to a cognate CCG codon in the A site with an equilibrium dissociation constant (K<sub>d</sub>) of 284 nM (Fig. 2A and Table S2). Removal of the m<sup>1</sup>G37 modification (m<sup>1</sup>G37<sup>-</sup>) significantly reduced binding, by ~6.5-fold (1.8 μM; Fig. 2A and Table S2).

Although the data could be fit with reasonable confidence (Fig. S1 and Table S2), the low maximum binding was concern-

---

Table 1

<table>
<thead>
<tr>
<th>m&lt;sup&gt;1&lt;/sup&gt;G37</th>
<th>A-site codon</th>
<th>k&lt;sub&gt;on&lt;/sub&gt; (μM&lt;sup&gt;-1&lt;/sup&gt; min&lt;sup&gt;-1&lt;/sup&gt;)</th>
<th>k&lt;sub&gt;off&lt;/sub&gt; (min&lt;sup&gt;-1&lt;/sup&gt;)</th>
<th>calc. K&lt;sub&gt;d&lt;/sub&gt; (μM)</th>
<th>Fold change in K&lt;sub&gt;d&lt;/sub&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASL&lt;sub&gt;C GG&lt;/sub&gt;&lt;sup&gt;Pro&lt;/sup&gt;</td>
<td>+ CGG</td>
<td>0.031 ± 0.004</td>
<td>0.013 ± 0.002</td>
<td>0.42</td>
<td>3</td>
</tr>
<tr>
<td>- CGG</td>
<td>0.012 ± 0.002</td>
<td>0.017 ± 0.002</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CCC-U</td>
<td>0.0039 ± 0.0005</td>
<td>0.014 ± 0.003</td>
<td>3.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CCC-U</td>
<td>0.017 ± 0.003</td>
<td>0.009 ± 0.001</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASL&lt;sub&gt;SufA6&lt;/sub&gt;</td>
<td>+ CGG</td>
<td>0.0053 ± 0.0007</td>
<td>0.013 ± 0.002</td>
<td>2.5</td>
<td>10</td>
</tr>
<tr>
<td>- CGG</td>
<td>0.053 ± 0.002</td>
<td>0.014 ± 0.003</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CCC-U</td>
<td>0.0041 ± 0.0001</td>
<td>0.015 ± 0.004</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CCC-U</td>
<td>0.062 ± 0.004</td>
<td>0.019 ± 0.004</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASL&lt;sub&gt;SufA6&lt;/sub&gt; A37.5</td>
<td>+ CGG</td>
<td>0.0057 ± 0.0004</td>
<td>0.09 ± 0.01</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>- CGG</td>
<td>0.0046 ± 0.0004</td>
<td>0.034 ± 0.007</td>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CCC-U</td>
<td>0.003 ± 0.001</td>
<td>0.005 ± 0.018</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CCC-U</td>
<td>0.146 ± 0.006</td>
<td>0.06 ± 0.01</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ing, if not unprecedented (39–41). Furthermore, impractical 70S concentrations required to reach maximum binding for weaker interactions prevented us from attempting to continue with this approach. Therefore, we instead performed competition binding assays, which allow for the calculation of the equilibrium dissociation constant (K\text{d}) based on measured association (k\text{on}) and dissociation (k\text{off}) rates (Fig. 2B) (42, 43). Unlike measuring the experimental K\text{d} to observe equilibrium binding, the k\text{on} and k\text{off} measurements provide information regarding the influence of the m1G37 modification at each step of the binding event separately (i.e. the association with and dissociation from the ribosomal A site). Using this approach, we found a modest difference in k\text{off} between ASL{Pro} and ASL{CGG} Δm1G37, implying that the modification does not stabilize tRNA binding to ribosomes. Instead, the m1G37 modification is important for initial binding, as shown by the 2.6-fold slower association rate of ASL{Pro} Δm1G37 (K\text{d} = 0.012 μM\textsuperscript{−1} min\textsuperscript{−1}) as compared with ASL{Pro} (K\text{d} = 0.031 μM\textsuperscript{−1} min\textsuperscript{−1}) to the CCG A-site codon (Fig. 2 (Cand D) and Table 1). These data are consistent with 70S structures demonstrating conformational distortion of the anticodon loop in the absence of the m1G37 modification (31). Furthermore, we found that the calculated dissociation constant (K\text{d}) of ASL{Pro} m1G37 with the cognate CCG codon is 420 nM (Table 1), whereas ASL{CGG} Δm1G37 binds to the A-site CCG codon with a calculated K\text{d} of 1.4 μM, consistent with directly measured K\text{d} values (Fig. 2A and Table S2).

Recognition of a +1 slippery CCG-U codon is enhanced by the lack of the m1G37 modification in tRNA{Pro}

Arresting suppressor tRNA{SuFA} undergoes +1 frameshifting similar to tRNA{CGG} lacking the m1G37 modification (26, 31). Both tRNA{SuFA} and tRNA{CGG} contain the m1G37 modification, and, in the case of tRNA{SuFA}, this modification is located adjacent to the inserted nucleotide (30) (Fig. 4A). We next tested the importance of the m1G37 modification in the context of an eight-nucleotide anticodon loop in tRNA{SuFA}, using the same kinetic binding assays as previously described. In contrast to the stabilizing effect observed with the m1G37 modification in ASL{CGG} on a cognate CCG codon, ASL{SuFA} associates with the CCG codon 10-fold faster in the absence of the modification (0.053 versus 0.0053 μM\textsuperscript{−1} min\textsuperscript{−1}) (Fig. 4B and Table 1). In contrast, the dissociation of ASL{SuFA} was essentially unaffected by the absence or presence of the modification (k\text{off} = 0.013 and 0.014 min\textsuperscript{−1}; Fig. 4C). The 10-fold difference in the calculated K\text{d} between ASL{SuFA} containing the m1G37 modification (2.5 μM) and lacking the m1G37 modification (0.26 μM) is thus reflective of the large changes in the tRNA association with the A site. One interpretation of these observations could be that, although the m1G37 modification imparts a stabilizing effect in anticodon loops of the canonical seven nucleotides (10, 44), increasing the anticodon loop to eight nucleotides, as seen in ASL{SuFA}, ablates any stabilization from the modification. Additionally, the overall trends of the ASL{SuFA} association rates are similar to the rates seen with ASL{CGG} on the slippery CCG-U codon.
Next, we tested the binding of ASLSufA6 to the slippery CCC-U codon. We found that the influence of the modification status of ASLSufA6 follows similar trends regardless of whether ASLSufA6 is recognizing a cognate CCG or a slippery CCC-U codon (Table 1). The association rate of ASLSufA6 for a slippery CCC-U codon is 0.0041 μM⁻¹ min⁻¹ as opposed to 0.0053 μM⁻¹ min⁻¹ for binding to the CCG codon in the presence of m1G37 in the ASL. In the absence of the m1G37 modification, ASLSufA6 has a 10-fold greater association rate for both the CCG and slippery CCC-U codons (0.053 and 0.062 μM⁻¹ min⁻¹, respectively). The dissociation of ASLSufA6 from a cognate CCG or a slippery CCC-U codon are all very similar regardless of the G37 modification status (0.013–0.019 min⁻¹). Together, these data indicate that the inserted G37.5 nucleotide in ASLSufA6 removes the dependence on the m1G37 modification required for tight association to the ribosome for the parent tRNA Pro. Further, the G37.5 nucleotide also prevents the ribosome from distinguishing between cognate and near-cognate slippery codons, as evidenced by the similar calculated K_d values in the absence of the m1G37 modification (0.26 and 0.31 μM, respectively).

**Engineering of the U32-A37.5 pairing in ASLSufA6 allows for tight association with the A site**

Our affinity assays show that frameshift suppressor ASLSufA6 is unable to bind with high affinity to a cognate CCG codon despite containing the same GGC anticodon as tRNA Pro (Fig. 1). Therefore, the m1G37 modification in ASLSufA6 has a very different role in stabilizing the interactions between the anticodon and codon in contrast to ASLSufA6. Although tRNA Pro and ASLSufA6 that bind poorly to the A site, 70S structures of these same tRNA-mRNA pairs bound have been solved (Fig. 5, A–C) (31). In the case of ASLSufA6, Δm1G37 bound to a cognate CCG codon, electron density is missing for nucleotide U32, which is located on the opposite side of the anticodon loop from A38 (Fig. 5B). The destabilization of the ASL is likely due to the apparent flexiblity of the 5’ stem, which, in turn, disrupts the conserved U32-A38 interaction located at the base of the RNA stem. The 32-38 disruption is noteworthy because the identity of these nucleotides is universally important in fine-tuning tRNA affinity and therefore translation fidelity (39, 45). The same structural phenomenon is also observed in 70S structures containing ASLSufA6. ASLSufA6 binding to a slippery CCC-U codon results in local distortion of the 5’ stem disrupting the U32-A38 pairing (Fig. 5C). In both cases, the tRNA-mRNA pair undergoes +1 frameshifting. Therefore, we postulated that the frameshift event was directly influenced by the destabilization of the 32-38 pairing after tRNA selection but before movement to the P site.

The G37.5 insertion in tRNA Pro changes the potential base pairing interaction of U32-A38 to U32-G37.5 (Fig. 5C). In this context, the U32-G37.5 pairing should render the ribosome unable to distinguish a cognate from noncognate interaction as the 32–38 nucleotide identity is directly correlated to the anticodon sequence (39, 45). Indeed, ASLSufA6 binds to cognate CCG and near-cognate (i.e., slippery) CCC-U codon with similar affinities (calculated K_d of 0.31 and 0.26 μM, respectively, in the absence of the m1G37 modification; Table 1). We next tested whether changing G37.5 to A37.5 could restore high-affinity A-site binding due to the possible formation of a new U32-A37.5 pair. We found that potentially restoring the U32-A37.5 base pair does not result in high-affinity binding to a cognate CCG codon in the absence or presence of the m1G37 modification (calculated K_d of 7.4 and 15 μM, respectively; Fig. 5, D and E and Table 1). Notably, in contrast to ASLSufA6 A37.5 displays similar association rates both in the presence (0.0057 μM⁻¹ min⁻¹) and absence (0.0046 μM⁻¹ min⁻¹) of m1G37, but k_off is reduced ~3-fold (0.09 and 0.034 min⁻¹, respectively) (Fig. 5, D and E).

In binding to the slippery CCC-U codon, ASLSufA6 A37.5 has a ~2-fold higher affinity (calculated K_d = 3.7 μM) than ASLSufA6 containing G37.5 (calculated K_d = 3.7 μM) in the presence of the m1G37 modification (Table 1). Removal of m1G37 results in ASLSufA6 A37.5 binding with high affinity, similar to ASLSufA6 G37.5 (calculated K_d = 0.31 μM for ASLSufA6 G37.5 and 0.45 μM for ASLSufA6 A37.5). The K_d for ASLSufA6 A37.5 m1G37 binding to a slippery CCC-U codon is comparable with modified ASLSufA6 binding to a cognate CCG codon (calculated K_d = 0.42 μM). For the ASLSufA6 A37.5


ASL elements that ensure accurate tRNA<sub>Pro</sub><sup>CGG</sup> decoding

Figure 5. Reordering of the 32–38 pairing allows for high affinity binding of ASL<sub>SufA6</sub> to a slippery CCC-U codon.

A, 2Fo − Fc electron density maps from a structure containing the 70S ribosome with ASL<sub>Pro</sub> decoding a cognate CCG codon in the A site (PDB code 4LSK; color scheme is the same as in Fig. 1); B, 70S ribosome with ASL<sub>Pro</sub> Δm<sup>1</sup>G37 decoding a cognate CCG codon (PDB code 4P70); C, 70S ribosome with ASL<sub>SufA6</sub> decoding a slippery CCC-U codon (PDB code 4L47). These structures demonstrate that the m<sup>1</sup>G37 modification stabilizes the U32–A38 interaction in ASL<sub>Pro</sub> on a cognate CCG codon (A) whereas the lack of the m<sup>1</sup>G37 modification results in disorder of the 3′ region of ASL<sub>Pro</sub> (B). A similar disordering is seen when ASL<sub>SufA6</sub> containing an inserted nucleotide in its anticodon loop (G37.5) decodes a slippery CCC-U codon (C). D and E, k<sub>on</sub> (D) and k<sub>off</sub> (E) rates of ASL<sub>SufA6</sub> with a mutated A37.5 with (m<sup>1</sup>G37) or without (Δm<sup>1</sup>G37) the modification bound to either the cognate CCG (black) or slippery CCC-U (green) codon. Data are the mean ± S.E. (error bars) of at least five independent experiments. F, 2Fo − Fc electron density maps from a structure containing the 70S ribosome with ASL<sub>SufA6</sub> A37.5 bound to an A-site slippery CCC-U codon. Mutation of G37.5 to A37.5 reorders the 3′ stem of the ASL, specifically nucleotides 31 and 32. 2Fo − Fc electron density maps are contoured at 1.5σ.

Δm<sup>1</sup>G37 binding to a slippery CCC-U codon, both the k<sub>on</sub> and k<sub>off</sub> rates are higher than those of other ASLs (k<sub>on</sub> = 0.146 μM<sup>−1</sup> min<sup>−1</sup>, k<sub>off</sub> = 0.06 min<sup>−1</sup>), implying that the recognition mechanism is altered. The increase in affinity implies that in the case of ASLSufA6 with the restored U32–A37.5, the lack of m<sup>1</sup>G37 enables high-affinity binding and recognition of the ASL when the slippery CCC-U codon is presented in the A site. Most importantly, we demonstrate that by changing the identity of the base insertion and controlling the modification at position 37 in the anticodon stem loop, we can tune the affinity of the ASL to the ribosomal A site. This has significant implications for understanding how the ribosome interacts with rationally engineered tRNAs.

Engineering the 32-38 pairing in ASL<sub>SufA6</sub> to U32–A37.5 reorders the 5′ stem of the anticodon loop

To determine whether the engineered ASLSufA6 A37.5 Δm<sup>1</sup>G37 does indeed reorder the ASL as suggested from the binding kinetics, we solved a 3.6 Å resolution X-ray crystal structure of ASL<sub>SufA6</sub> A37.5 Δm<sup>1</sup>G37 bound to the Thermus thermophilus 70S ribosome (Fig. 5F and Table 2). The ASL and mRNA density are well-ordered and unambiguously demonstrate a change in the anticodon loop (Fig. 5F) as compared with other ASLSufA6 structures bound to the ribosome (Fig. 5, A–C) (31). The ASLSufA6 A37.5 Δm<sup>1</sup>G37 has good density for U32 in contrast to the previous structures that showed distortion of the 5′ region of the ASL (Fig. 5, B and C). The phosphate backbone of nucleotide A37.5 shifts by 2.8 Å as compared with WT ASL<sub>Pro</sub>CGG bound to its cognate CCG codon and by 6.2 Å when compared with ASLSufA6 with the G37.5 (Fig. 5F, S3A). This movement places A37.5 across from U32, allowing the possible formation of a single hydrogen bond similar to the 32–38 orientation observed in other tRNAs (Fig. 5F, S2)(31, 46, 47). Overall, the A37.5 insertion in ASLSufA6 seems to orient the ASL to a conformation more similar to that of ASL<sub>Pro</sub>CGG than that of WT ASL<sub>Pro</sub>CGG (Fig. S3, B and C). 16S rRNA nucleotides A1492 and A1493 flip from their internal position in helix 44, and G530 is positioned close to A1492, demonstrating recognition by the ribosome (Fig. S4).

Discussion

Modification of tRNAs adds an important layer of regulation during translation. These modifications are so functionally important that more genes are devoted to tRNA modification
pathways than to the expression of tRNAs themselves (48). Modifications in the ASLs of tRNAs are critical, given that only 7 of the 61 sense codons are decoded by tRNAs that lack modifications at nucleotide 34 or 37 in *E. coli* (49, 50). In this work, we determine that the m^1G37 modification in ASL^Cgg^Pro is required for high-affinity binding to a cognate CCG codon in the decoding center (Fig. 2). The absence of the modification results in low-affinity binding, and specifically, the association (k_on) is reduced almost 3-fold, whereas k_off is unaffected (Fig. 2). These results indicate that the m^1G37 modification in tRNA^Cgg^Pro provides stability in association with the decoding center rather than causing A-site drop-off. Consistent with these data are our previous structural studies that showed destabilization of the anticodon loop when ASL^Cgg^Pro lacks the m^1G37 modification and interacts with a cognate CCG codon (31) (Fig. 5B).

Both tRNA^Cgg^Pro and tRNA^Ggg^Pro isoacceptors lacking the m^1G37 modification undergo +1 frameshifting on CCC-N codons (26, 29, 51). Although ASL^Cgg^Pro containing the m^1G37 modification significantly impairs binding to a slippery CCC-U codon (3.62 μM; Fig. 3A), its removal causes a ~4-fold enhancement in ASL^Cgg^Pro, association with the slippery codon (Fig. 3B). This association results in tighter binding (calculated K_d of 0.41 μM) that is comparable with binding of WT ASL^Cgg^Pro to a cognate CCG codon (0.42 μM). These data suggest that the additional stability that the m^1G37 modification imparts in binding to a cognate CCG codon is lost in the context of a non-Watson–Crick C34-C4 pair at the third or wobble position. Collectively, these results show that the m^1G37 modification in ASL^Cgg^Pro stabilizes high-affinity interactions in the cognate case but prevents recognition of slippery codons that would result in +1 frameshifting.

tRNAs containing expanded anticodon stem loops can cause “slipping” on mRNA codons, resulting in frameshifts (37). An extra nucleotide insertion in the anticodon loop of tRNA^Cgg^Pro was identified in a frameshift suppressor tRNA (named tRNA^SufA6^) that reverts a +1 frameshift. Primer extension analyses revealed that tRNA^SufA6^ was also modified at nucleotide 37, similar to all three tRNA^Pro^ isoacceptors (30, 52), but the extent of modification was not determined. It is unclear what role, if any, the m^1G37 modification has in tRNA^SufA6^ mediation +1 frameshifting. We find that the presence of the m^1G37 modification renders ASL^SufA6^ unable to bind to both cognate CCG and slippery CCC-U codons (Fig. 4B). In contrast, ASL^SufA6^ lacking m^1G37 binds with high affinity to either a cognate CCG or a slippery CCC-U codon. These data support the notion that the m^1G37 modification and the inserted G37.5 nucleotide likely stabilize the anticodon loop in similar ways. In support of the functional similarities of m^1G37 and G37.5, structures of tRNA^Cgg^Pro m^1G37 or tRNA^SufA6^ decoding codons that allow for +1 frameshifting reveal structural similarities. The 3’ stem of the ASL, in particular nucleotides 30–32 on the opposite side of the G37.5/G37, is conformationally dynamic in both structures, strongly suggesting that +1 frameshifts induced by these two tRNAs occur by a similar mechanism (Fig. 5, B and C) (31).

In tRNA^Cgg^Pro, Nucleotide U32 normally forms a single hydrogen bond with A38 and thus is not a Watson–Crick base pair (Fig. 5A and Fig. S2). The nucleotide identity of the 32:38 pairing in all tRNAs is inversely correlated to the strength of the codon–anticodon interaction (39, 41, 45). For example, the anticodon of *E. coli* tRNA^Ala^Pro is considered strong because of the three GC pairs between the codon and the anticodon. Therefore, in this strong case, the 32:38 pairing needs to be correspondingly weak to counterbalance the strength of the codon–anticodon. Changing the 32:38 pairing in tRNA^Ala^Ggc from a weak, conserved U32:A38 pair to a strong pair, such as C32:A38, prevents the ribosome from being able to distinguishing correct from incorrect tRNA-mRNA pairs (41, 53). In the context of tRNA^SufA6^, the inserted G37.5 displaces A38, preventing a U32:A38 pairing (31). Binding of ASL^SufA6^ to a cognate CCG or a +1 slippery CCC-U codon is extremely weak as indicated by both the k_on and k_off rates (Fig. 4). We attempted to restore the WT U32:A38 found in tRNA^Cgg^Pro by changing G37.5 in tRNA^SufA6^ to an adenosine. ASL^SufA6^ A37.5 binds poorly to a CCG codon regardless of the m^1G37 modification status (Fig. 5D). Interestingly, the A37.5 mutant bound tightly to the slippery CCC-U codon, but only in the absence of the m^1G37 modification, similar to ASL^SufA6^. An X-ray crystal structure of the ribosome with an A-site ASL^SufA6^ A37.5 (lacking the m^1G37 modification) bound to a slippery CCC-U codon reveals a reordering of the 3’ stem such that U32 regains rigidity as assessed by its electron density (Fig. 5F). We predict that this engineered tRNA^SufA6^ does not undergo +1 frameshifting because of ordering of the ASL, but further studies are required to test this.

The studies here demonstrate that the m^1G37 modification of tRNA^Pro^ influences recognition of both cognate and near-cognate, slippery codons. tRNA^Pro^ lacking the m^1G37 modification undergoes +1 frameshifting, but our previous structures, along with other structures of extended ASLs that frameshift, show that the shift into the new frame does not occur in the decoding center (31, 54, 55). At what stage of elongation does tRNA^Pro^ lacking the m^1G37 modification cause a +1 frameshift? Kinetic analyses of tRNA^Ggg^ movement through the ribosome reveal that the shift can occur at two
distinct stages: a fast mechanism during translocation of the tRNA-mRNA pairs to the P site and a slower mechanism when tRNA ProCGG is stalled in the P site while waiting for A-site tRNA decoding (28). A recent structure of ASL labeled bound to a Luria broth (LB) medium at 37 °C and then cooled on ice for 20 min. All centrifugation steps were performed at 4 °C. Cells were pelleted by centrifugation and washed with buffer 1 (10 mM HEPES-KOH, pH 7.6, 10 mM MgCl₂, 1 mM NH₄Cl, 6 mM β-mercaptoethanol (β-Me)) twice and then resuspended in buffer 2 (10 mM HEPES-KOH, pH 7.6, 10 mM MgCl₂, 100 mM NH₄Cl, 6 mM β-Me). Cells were lysed using an EmulsiFlex-C5 high-pres-
Initial association rates were obtained using different concentrations of the 70S complex (final concentrations of 12.5, 25, 50, 100, and 200 nM). $k_{on}$ was derived as the slope of the linear regression performed on the initial rates versus [70S] plot.

**Measuring $k_{off}$ values**

Dissociation of the ASL from the 70S A site was initiated by a 1:100 dilution of the equilibrium binding reaction (1 μM 70S, 3 μM mRNA, 5 μM tRNA$^{\text{Met}}$, 0.05 μM $[^32P]$ASL) in buffer 3 containing 0.3 μM unlabeled ASL. At 5-min intervals, 10-μl aliquots of the reaction were removed, filtered, and washed. The ASL fraction bound was normalized to $t = 0$. The natural log of the normalized fraction bound was fitted with a linear regression versus time, and $k_{off}$ was derived as the negative of the slope.

**Crystallization, X-ray data collection, and structural determination**

Purification of *T. thermophilus* 70S ribosomes, formation of complexes with mRNA and tRNAs, and initial screening conditions followed previously established protocols (46, 68). Two μl of the ribosome complex (4.4 μM 70S, 8.8 μM mRNA, 11 μM tRNA$^{\text{Met}}$, 22 μM ASL$^{\text{SufA}}$, 11 μM CC-puromycin (Dharmacon), and 2.8 μM deoxy-BigCHAP (Hampton Research)) were mixed with 2.4 μl of reservoir condition (0.1 M Tris-HOAc, pH 7.0, 0.2 M KSCN, 4.5–5.5% (w/v) PEG 20K, 4.5–5.5% (w/v) PEG 550 MME, 10 mM Mg(OAc)$_2$). Crystals were grown by sitting drop at 20 °C in 2 weeks. Crystals were cryoprotected using increasing amounts of PEG 550 MME to a final concentration of 35%, with the final solution containing 22 μM ASL$^{\text{SufA}}$ and 11 μM CC-puromycin. The crystals were screened at the SER-CAT beamlines (funded by its member institutions and pilot and user beamlines) and W-31-109-Eng-38 (SER-CAT).

**References**

19. Hoffer, E. D., Maehigashi, T., Fredrick, K., and Dunham, C. M. (2019) Ribosomal ambiguity (ram) mutations promote the open (off) to closed
ASL elements that ensure accurate tRNAProCGG decoding

(on) transition and thereby increase miscoding. Nucleic Acids Res. 47, 1557–1563 CrossRef


Importance of a tRNA anticodon loop modification and a conserved, noncanonical anticodon stem pairing in tRNA Pro for decoding
Ha An Nguyen, Eric D. Hoffer and Christine M. Dunham

doi: 10.1074/jbc.RA118.007410 originally published online February 19, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.007410

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 71 references, 21 of which can be accessed free at http://www.jbc.org/content/294/14/5281.full.html#ref-list-1